TY - JOUR
T1 - Shortened duration whole body 18F-FDG PET Patlak imaging on the Biograph Vision Quadra PET/CT using a population-averaged input function
AU - van Sluis, Joyce
AU - van Snick, Johannes H.
AU - Brouwers, Adrienne H.
AU - Noordzij, Walter
AU - Dierckx, Rudi A.J.O.
AU - Borra, Ronald J.H.
AU - Lammertsma, Adriaan A.
AU - Glaudemans, Andor W.J.M.
AU - Slart, Riemer H.J.A.
AU - Yaqub, Maqsood
AU - Tsoumpas, Charalampos
AU - Boellaard, Ronald
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Excellent performance characteristics of the Vision Quadra PET/CT, e.g. a substantial increase in sensitivity, allow for precise measurements of image-derived input functions (IDIF) and tissue time activity curves. Previously we have proposed a method for a reduced 30 min (as opposed to 60 min) whole body 18F-FDG Patlak PET imaging procedure using a previously published population-averaged input function (PIF) scaled to IDIF values at 30–60 min post-injection (p.i.). The aim of the present study was to apply this method using the Vision Quadra PET/CT, including the use of a PIF to allow for shortened scan durations.Methods: Twelve patients with suspected lung malignancy were included and received a weight-based injection of 18F-FDG. Patients underwent a 65-min dynamic PET acquisition which were reconstructed using European Association of Nuclear Medicine Research Ltd. (EARL) standards 2 reconstruction settings. A volume of interest (VOI) was placed in the ascending aorta (AA) to obtain the IDIF. An external PIF was scaled to IDIF values at 30–60, 40–60, and 50–60 min p.i., respectively, and parametric 18F-FDG influx rate constant (Ki) images were generated using a t* of 30, 40 or 50 min, respectively. Herein, tumour lesions as well as healthy tissues, i.e. liver, muscle tissue, spleen and grey matter, were segmented.Results: Good agreement between the IDIF and corresponding PIF scaled to 30–60 min p.i. and 40–60 min p.i. was obtained with 7.38% deviation in Ki. Bland–Altman plots showed excellent agreement in Ki obtained using the PIF scaled to the IDIF at 30–60 min p.i. and at 40–60 min p.i. as all data points were within the limits of agreement (LOA) (− 0.004–0.002, bias: − 0.001); for the 50–60 min p.i. Ki, all except one data point fell in between the LOA (− 0.021–0.012, bias: − 0.005).Conclusions: Parametric whole body 18F-FDG Patlak Ki images can be generated non-invasively on a Vision Quadra PET/CT system. In addition, using a scaled PIF allows for a substantial (factor 2 to 3) reduction in scan time without substantial loss of accuracy (7.38% bias) and precision (image quality and noise interference).
AB - Background: Excellent performance characteristics of the Vision Quadra PET/CT, e.g. a substantial increase in sensitivity, allow for precise measurements of image-derived input functions (IDIF) and tissue time activity curves. Previously we have proposed a method for a reduced 30 min (as opposed to 60 min) whole body 18F-FDG Patlak PET imaging procedure using a previously published population-averaged input function (PIF) scaled to IDIF values at 30–60 min post-injection (p.i.). The aim of the present study was to apply this method using the Vision Quadra PET/CT, including the use of a PIF to allow for shortened scan durations.Methods: Twelve patients with suspected lung malignancy were included and received a weight-based injection of 18F-FDG. Patients underwent a 65-min dynamic PET acquisition which were reconstructed using European Association of Nuclear Medicine Research Ltd. (EARL) standards 2 reconstruction settings. A volume of interest (VOI) was placed in the ascending aorta (AA) to obtain the IDIF. An external PIF was scaled to IDIF values at 30–60, 40–60, and 50–60 min p.i., respectively, and parametric 18F-FDG influx rate constant (Ki) images were generated using a t* of 30, 40 or 50 min, respectively. Herein, tumour lesions as well as healthy tissues, i.e. liver, muscle tissue, spleen and grey matter, were segmented.Results: Good agreement between the IDIF and corresponding PIF scaled to 30–60 min p.i. and 40–60 min p.i. was obtained with 7.38% deviation in Ki. Bland–Altman plots showed excellent agreement in Ki obtained using the PIF scaled to the IDIF at 30–60 min p.i. and at 40–60 min p.i. as all data points were within the limits of agreement (LOA) (− 0.004–0.002, bias: − 0.001); for the 50–60 min p.i. Ki, all except one data point fell in between the LOA (− 0.021–0.012, bias: − 0.005).Conclusions: Parametric whole body 18F-FDG Patlak Ki images can be generated non-invasively on a Vision Quadra PET/CT system. In addition, using a scaled PIF allows for a substantial (factor 2 to 3) reduction in scan time without substantial loss of accuracy (7.38% bias) and precision (image quality and noise interference).
KW - Dynamic imaging
KW - Patlak
KW - PET/CT
KW - Scan duration
KW - Vision Quadra
U2 - 10.1186/s40658-022-00504-9
DO - 10.1186/s40658-022-00504-9
M3 - Article
AN - SCOPUS:85140919115
SN - 2197-7364
VL - 9
JO - EJNMMI physics
JF - EJNMMI physics
M1 - 74
ER -