TY - JOUR
T1 - Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants
T2 - a Dutch prospective cohort study
AU - de Cock, Marijke
AU - de Boer, Michiel R.
AU - Lamoree, Marja
AU - Legler, Juliette
AU - van de Bor, Margot
N1 - Funding Information:
We would like to thank Jacco Koekkoek for the analysis of the samples. This research was funded by the European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agreement OBELIX n° 227391.
Publisher Copyright:
© 2014 de Cock et al.
PY - 2014
Y1 - 2014
N2 - Background: Endocrine disrupting chemicals (EDCs) present in the environment may disrupt thyroid hormones, which in early life are essential for brain development. Observational studies regarding this topic are still limited, however as the presence of chemicals in the environment is ubiquitous, further research is warranted. The objective of the current study was to assess the association between exposure markers of various EDCs and thyroxine (T4) levels in newborns in a mother-child cohort in the Netherlands.Methods: Exposure to dichlorodiphenyldichloroethylene (DDE), three di-2-ethylhexyl phthalate (DEHP) metabolites, hexachlorobenzene (HCB), polychlorinated biphenyl (PCB)-153, perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) was determined in cord plasma or breast milk, and information on T4 levels in heel prick blood spots was obtained through the neonatal screening programme in the Netherlands. Linear regression models were composed to determine associations between each of the compounds and T4, which were stratified for gender and adjusted for a priori defined covariates.Results: Mean T4 level was 86.9 nmol/L (n = 83). Girls in the highest quartile of DDE and PFOA exposure showed an increased T4 level compared to the lowest quartile with both crude and fully adjusted models (DDE > 107.50 ng/L, +24.8 nmol/L, 95% CI 0.79, 48.75; PFOA > 1200 ng/L, +38.6 nmol/L, 95% CI 13.34, 63.83). In boys a lower T4 level was seen in the second quartile of exposure for both PFOS and PFOA, however after fully adjusting the models these associations were attenuated. No effects were observed for the other compounds.Conclusion: DDE and perfluorinated alkyl acids may be associated with T4 in a sex-specific manner. These results should however be interpreted with caution, due to the relatively small study population. More research is warranted, as studies on the role of environmental contaminants in this area are still limited.
AB - Background: Endocrine disrupting chemicals (EDCs) present in the environment may disrupt thyroid hormones, which in early life are essential for brain development. Observational studies regarding this topic are still limited, however as the presence of chemicals in the environment is ubiquitous, further research is warranted. The objective of the current study was to assess the association between exposure markers of various EDCs and thyroxine (T4) levels in newborns in a mother-child cohort in the Netherlands.Methods: Exposure to dichlorodiphenyldichloroethylene (DDE), three di-2-ethylhexyl phthalate (DEHP) metabolites, hexachlorobenzene (HCB), polychlorinated biphenyl (PCB)-153, perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) was determined in cord plasma or breast milk, and information on T4 levels in heel prick blood spots was obtained through the neonatal screening programme in the Netherlands. Linear regression models were composed to determine associations between each of the compounds and T4, which were stratified for gender and adjusted for a priori defined covariates.Results: Mean T4 level was 86.9 nmol/L (n = 83). Girls in the highest quartile of DDE and PFOA exposure showed an increased T4 level compared to the lowest quartile with both crude and fully adjusted models (DDE > 107.50 ng/L, +24.8 nmol/L, 95% CI 0.79, 48.75; PFOA > 1200 ng/L, +38.6 nmol/L, 95% CI 13.34, 63.83). In boys a lower T4 level was seen in the second quartile of exposure for both PFOS and PFOA, however after fully adjusting the models these associations were attenuated. No effects were observed for the other compounds.Conclusion: DDE and perfluorinated alkyl acids may be associated with T4 in a sex-specific manner. These results should however be interpreted with caution, due to the relatively small study population. More research is warranted, as studies on the role of environmental contaminants in this area are still limited.
KW - Endocrine disruptors
KW - Fetal basis of adult disease
KW - Prenatal exposure
KW - Thyroxine
U2 - 10.1186/1476-069X-13-106
DO - 10.1186/1476-069X-13-106
M3 - Article
C2 - 25495114
AN - SCOPUS:84965190352
SN - 1476-069X
VL - 13
JO - Environmental Health: A Global Access Science Source
JF - Environmental Health: A Global Access Science Source
IS - 1
M1 - 106
ER -