TY - JOUR
T1 - Mutations in the TGF beta Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias
AU - Le Goff, Carine
AU - Mahaut, Clementine
AU - Wang, Lauren W.
AU - Allali, Slimane
AU - Abhyankar, Avinash
AU - Jensen, Sacha
AU - Zylberberg, Louise
AU - Collod-Beroud, Gwenaelle
AU - Bonnet, Damien
AU - Alanay, Yasemin
AU - Brady, Angela. F.
AU - Cordier, Marie-Pierre
AU - Devriendt, Koen
AU - Genevieve, David
AU - Kiper, Pelin Ozlem Simsek
AU - Kitoh, Hiroshi
AU - Krakow, Deborah
AU - Lynch, Sally Ann
AU - Le Merrer, Martine
AU - Megarbane, Andre
AU - Mortier, Geert
AU - Odent, Sylvie
AU - Polak, Michel
AU - Rohrbach, Marianne
AU - Sillence, David
AU - Stolte-Dijkstra, Irene
AU - Superti-Furga, Andrea
AU - Rimoin, David L.
AU - Topouchian, Vicken
AU - Unger, Sheila
AU - Zabel, Bernhard
AU - Bole-Feysot, Christine
AU - Nitschke, Patrick
AU - Handford, Penny
AU - Casanova, Jean-Laurent
AU - Boileau, Catherine
AU - Apte, Suneel S.
AU - Munnich, Arnold
AU - Cormier-Dairel, Valerie
PY - 2011/7/15
Y1 - 2011/7/15
N2 - Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although All has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGF beta-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGF beta signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTS12 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGF beta signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
AB - Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although All has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGF beta-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGF beta signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTS12 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGF beta signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
KW - FIBRILLIN-1
KW - GENE
KW - MATRIX
U2 - 10.1016/j.ajhg.2011.05.012
DO - 10.1016/j.ajhg.2011.05.012
M3 - Article
SN - 0002-9297
VL - 89
SP - 7
EP - 14
JO - American Journal of Human Genetics
JF - American Journal of Human Genetics
IS - 1
ER -