Abstract
The disk around the Herbig Ae star HD 169142 was imaged and resolved at 18.8 and 24.5 mu m using Subaru/COMICS. We interpret the observations using a two-dimensional radiative transfermodel and find evidence for the presence of a large gap. The mid-infrared images trace dust that is emitted at the onset of a strong rise in the spectral energy distribution (SED) at 20 mu m, and are therefore very sensitive to the location and characteristics of the inner wall of the outer disk and its dust. We determine the location of the wall to be 23(-5)(+3) AU from the star. An extra component of hot dust must exist close to the star. We find that a hydrostatic optically thick inner disk does not produce enough flux in the near-infrared, and an optically thin, geometrically thick component is our solution to fit the SED. Considering the recent findings of gaps and holes in a number of Herbig Ae/Be group I disks, we suggest that such disk structures may be common in group I sources. Classification as group I should be considered a strong case for classification as a transitional disk, though improved imaging surveys are needed to support this speculation.
Original language | English |
---|---|
Article number | 143 |
Number of pages | 7 |
Journal | Astrophysical Journal |
Volume | 752 |
Issue number | 2 |
DOIs | |
Publication status | Published - 20-Jun-2012 |
Externally published | Yes |
Keywords
- circumstellar matter
- protoplanetary disks
- stars: pre-main sequence
- HERBIG-AE/BE STARS
- PROTOPLANETARY DISKS
- CIRCUMSTELLAR DISKS
- RADIATIVE-TRANSFER
- SURROUNDING HD-142527
- SUBARU-TELESCOPE
- DUST
- GRAINS
- SPECTROMETER
- SPECTROSCOPY