Microdialysis-Coupled Enzymatic Microreactor for in Vivo Glucose Monitoring in Rats

Byeong-Ui Moon, Martin G. de Vries, Carlos A. Cordeiro, Ben H. C. Westerink, Elisabeth Verpoorte*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

24 Citations (Scopus)

Abstract

Continuous glucose monitoring (CGM) is an important aid for diabetic patients to optimize glycemic control and to prevent long-term complications. However, current CGM devices need further miniaturization and improved functional performance. We have coupled a previously described microfluidic chip with enzymatic microreactor (EMR) to a microdialysis probe and evaluated the performance of this system for monitoring subcutaneous glucose concentration in rats. Nanoliter volumes of microdialysis sample are efficiently reacted with continuously supplied glucose oxidase (GOx) solution in the EMR. The hydrogen peroxide produced is amperometrically detected at a (polypyrrole (PPy)-protected) thin-film Pt electrode. Subcutaneous glucose concentration was continuously monitored in anesthetized rats in response to intravenous injections of 20% glucose (w/v), 5 U/kg insulin, or saline as a control. In vitro evaluation showed a linear range of 2.1-20.6 mM and a sensitivity of 7.8 +/- 1.0 nA/mM (n = 6). The physical lag time between microdialysis and the analytical signal was approximately 18 min. The baseline concentration of blood glucose was 10.2 +/- 2.3 mM. After administering glucose to the rats, glucose levels increased by about 2 mM to 12.1 +/- 2.3 mM in blood and 11.9 +/- 1.5 mM in subcutaneous interstitial fluid (ISF). After insulin administration, glucose levels decreased by about 8 mM relative to baseline to 2.1 +/- 0.6 mM in blood and 2.1 +/- 0.9 mM in ISF. A microfluidic device with integrated chaotic mixer and EMR has been successfully combined with subcutaneous microdialysis to continuously monitor glucose in rats. This proof-of-principle demonstrates the feasibility of improved miniaturization in CGM based on microfluidics.

Original languageEnglish
Pages (from-to)10949-10955
Number of pages7
JournalAnalytical Chemistry
Volume85
Issue number22
DOIs
Publication statusPublished - 19-Nov-2013

Keywords

  • INSULIN-INDUCED HYPOGLYCEMIA
  • SUBCUTANEOUS ADIPOSE-TISSUE
  • TYPE-1 DIABETIC-PATIENTS
  • BLOOD-GLUCOSE
  • INTERSTITIAL GLUCOSE
  • HEALTHY-VOLUNTEERS
  • SENSORS
  • SYSTEMS
  • POLYPYRROLE
  • TECHNOLOGY

Fingerprint

Dive into the research topics of 'Microdialysis-Coupled Enzymatic Microreactor for in Vivo Glucose Monitoring in Rats'. Together they form a unique fingerprint.

Cite this