In situ transmission electron microscopy study of the crystallization of fast-growth doped SbxTe alloy films

BJ Kooi*, R Pandian, JTM De Hosson, A Pauza

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
367 Downloads (Pure)

Abstract

Crystallization of amorphous thin films composed of doped SbxTe with x = 3.0, 3.6, and 4.2 and constant dopant level was studied by in situ heating in a transmission electron microscopy. Magnetron sputtering was used to deposit 20-nm-thick films sandwiched between two types of 3-nm-thick dielectric layers on 25-nm-thick silicon-nitride membranes. One type of dielectric layer consists of ZnS-SiO2 (ZSO), the other of GeCrN (GCN). Crystallization was studied for temperatures in-between 150 and 190 degrees C. The type of dielectric layer turned out to strongly influence the crystallization process. Not only did the nucleation rate appear to depend sensitively on the dielectric layer type, but also the growth rate. The velocity of the crystalline/amorphous interface is about 5 times higher for the x = 4.2 film than for the x = 3.0 film if ZSO is used. In case of GCN, the interface velocity is about 2 times higher for the x = 4.2 film than for the x = 3.0 film. The activation energy for crystal growth is not significantly dependent on the Sb/Te ratio but is clearly different for ZSO and GCN-2.9 eV and 2.0 eV, respectively. The incubation time for the crystal nuclei formation is longer for ZSO than for GCN. Although the effects of the Sb/Te ratio and the dielectric layer type on the growth rates are strong, their effects on the nucleation rate are even more pronounced. A higher Sb/Te ratio results in a lower nucleation rate and the use of GCN instead of ZSO leads to higher nucleation rates.

Original languageEnglish
Pages (from-to)1825-1835
Number of pages11
JournalJournal of materials research
Volume20
Issue number7
DOIs
Publication statusPublished - Jul-2005

Keywords

  • THIN-FILMS
  • AMORPHOUS FILMS
  • GE2SB2TE5 FILMS
  • NUCLEATION
  • TRANSITION
  • SPEED

Fingerprint

Dive into the research topics of 'In situ transmission electron microscopy study of the crystallization of fast-growth doped SbxTe alloy films'. Together they form a unique fingerprint.

Cite this