Abstract
Phosphatidylserine (PS) lipids are important signaling molecules and the most common negatively charged lipids in eukaryotic membranes. The signaling can be often regulated by calcium, but its interactions with PS headgroups are not fully understood. Classical molecular dynamics (MD) simulations can potentially give detailed description of lipid-ion interactions, but the results strongly depend on the used force field. Here, we apply the electronic continuum correction (ECC) to the Amber Lipid17 parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipid to improve its interactions with K+, Na+, and Ca2+ ions. The partial charges of the headgroup, glycerol backbone, and carbonyls of POPS, bearing a unit negative charge, were scaled with a factor of 0.75, derived for monovalent ions, and the Lennard-Jones σ parameters of the same segments were scaled with a factor of 0.89. The resulting ECC-POPS model gives more realistic interactions with Na+ and Ca2+ cations than the original Amber Lipid17 parameters when validated using headgroup order parameters and the "electrometer concept". In ECC-lipids simulations, populations of complexes of Ca2+ cations with more than two PS lipids are negligible, and interactions of Ca2+ cations with only carboxylate groups are twice more likely than with only phosphate groups, while interactions with carbonyls almost entirely involve other groups as well. Our results pave the way for more realistic MD simulations of biomolecular systems with anionic membranes, allowing signaling processes involving PS and Ca2+ to be elucidated.
Original language | English |
---|---|
Pages (from-to) | 738-748 |
Number of pages | 11 |
Journal | Journal of Chemical Theory and Computation |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 14-Jan-2020 |
Keywords
- MOLECULAR-DYNAMICS SIMULATIONS
- SEGMENTAL ORDER PARAMETERS
- MONO-VALENT CATIONS
- PHOSPHATIDYLSERINE BILAYER
- FORCE-FIELD
- MAGNETIC-RESONANCE
- NEUTRON-SCATTERING
- CALCIUM-BINDING
- METAL-IONS
- PHOSPHATIDYLCHOLINE
Fingerprint
Dive into the research topics of 'Improved Cation Binding to Lipid Bilayers with Negatively Charged POPS by Effective Inclusion of Electronic Polarization'. Together they form a unique fingerprint.Datasets
-
Molecular dynamics simulations of lipid bilayers containing POPC and POPS with the lipid17 force field, only counterions, and CaCl2 concentrations
Melcr, J. (Contributor), ZENODO, 14-Nov-2018
Dataset