Downregulation of active caspase 8 as a mechanism of acquired TRAIL resistance in mismatch repair-proficient colon carcinoma cell lines

Caroline M. M. Van Geelen, Bodvael Pennarun, Wytske Boerma-Van Ek, Phuong T. K. Le, Diana C. J. Spierings, Elisabeth G. E. De Vries, Steven De Jong*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

30 Citations (Scopus)

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers the apoptotic cascade in various colon cancer cell lines after binding to the membrane receptors DR4 and DR5. However, not all cancer cell lines are sensitive to the therapeutic recombinant human TRAIL (rhTRAIL). To investigate the causes of TRAIL resistance in colon cancer cell lines, models have been developed, mostly in mismatch repair-deficient cells. These cells are prone to mutations in genes containing tandem repeat, including pro-apoptotic protein Bax. We therefore investigated the mechanism underlying TRAIL resistance acquisition in a mismatch repair-proficient colon carcinoma cell line. The TRAIL-resistant cell line SW948-TR was established from the TRAIL-sensitive cell line SW948 by continuous exposure to rhTRAIL, and exhibited 140-fold less sensitivity to rhTRAIL in a cell viability assay. Resistance was stable for over a year in the absence of rhTRAIL. Both cell lines had similar TRAIL receptor cell membrane expression levels. Treatment with the protein synthesis inhibitor cycloheximide sensitized SW948-TR to rhTRAIL-induced apoptosis, indicating that the functionality of the TRAIL receptors was maintained. In SW948-TR, procaspase 8 protein levels but not mRNA levels were notably lower than in SW948. Downregulation of c-FLIP with short interfering RNA (siRNA) sensitized SW948-TR cells to rhTRAIL while caspase 8 siRNA decreased rhTRAIL sensitivity in SW948, indicating the importance of the caspase 8/c-FLIP ratio. Proteasome inhibition with MG 132 did not restore basic procaspase 8 levels but stabilized cleaved caspase 8 in rhTRAIL-treated SW948-TR cells. Altogether, our results suggest that colon cancer cells can acquire rhTRAIL resistance by primarily reducing the basal procaspase 8/c-FLIP ratio and by increasing active caspase 8 degradation after rhTRAIL treatment. Proteasome inhibitors can effectively overcome acquired rhTRAIL resistance in mismatch repair-proficient colon cancer cells.

Original languageEnglish
Pages (from-to)1031-1041
Number of pages11
JournalInternational journal of oncology
Volume37
Issue number4
DOIs
Publication statusPublished - Oct-2010

Keywords

  • TRAIL
  • DR4
  • DR5
  • caspase 8
  • FLIP
  • drug resistance
  • apoptosis
  • NF-KAPPA-B
  • INDUCED APOPTOSIS
  • CANCER CELLS
  • DEATH
  • EXPRESSION
  • LIGAND
  • PROTEIN
  • SENSITIZATION
  • ACTIVATION
  • CARCINOGENESIS

Fingerprint

Dive into the research topics of 'Downregulation of active caspase 8 as a mechanism of acquired TRAIL resistance in mismatch repair-proficient colon carcinoma cell lines'. Together they form a unique fingerprint.

Cite this