Controllability of a class of bimodal discrete-time piecewise linear systems

E. Yurtseven, M.K. Camlibel, W.P.M.H. Heemels

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

198 Downloads (Pure)

Abstract

In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on the planar case. In particular, the class is characterized by a continuous right-hand side, a scalar input and a transfer function from the control input to the switching variable with at most two zeroes whereas the state can be of any dimension. To arrive at the main result, we will make use of geometric control theory for linear systems and a novel result on controllability for input-constrained linear systems with non-convex constraint sets.
Original languageEnglish
Title of host publicationProceedings of the European Control Conference'13
PublisherEUCA
Pages1663-1668
Number of pages6
ISBN (Print)9783033039629
Publication statusPublished - 2013
Event2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland - Zürich, Switzerland
Duration: 17-Jul-201319-Jul-2013

Conference

Conference2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland
Country/TerritorySwitzerland
City Zürich
Period17/07/201319/07/2013

Keywords

  • non-convex input constraint set
  • reachability
  • hybrid systems
  • controllability
  • piecewise linear systems
  • bimodal systems

Fingerprint

Dive into the research topics of 'Controllability of a class of bimodal discrete-time piecewise linear systems'. Together they form a unique fingerprint.

Cite this