Abstract
F-420-dependent enzymes are found in many microorganisms and can catalyze a wide range of redox reactions, including those with some substrates that are otherwise recalcitrant to enzyme-mediated reductions. Unfortunately, the scarceness of the cofactor prevents application of these enzymes in biocatalysis. The best F-420-producing organism, Mycobacterium smegmatis, only produces 1.4 mu mol per liter of culture. Therefore, we synthesized the unnatural cofactor FO-5'-phosphate, coined FOP. The FO core-structure was chemically synthesized, and an engineered riboflavin kinase from Corynebacterium ammoniagenes (CaRFK) was then used to phosphorylate the 5'-hydroxyl group. The triple F21H/F85H/A66I CaRFK mutant reached 80% of FO conversion in 12 h. The same enzyme could produce 1 mg (2.5 mu mol) of FOP in 50 mL of reaction volume, which translates to a production of 50 mu mol/L. The activity toward FOP was tested for an enzyme of each of the three main structural classes of F-420-dependent oxidoreductases. The sugar-6-phosphate dehydrogenase from Cryptosporangium arvum (FSD-Cryar), the F-420:NADPH oxidoreductase from Thermobifida fusca (TfuFNO), and the F-420-dependent reductases from Mycobacterium hassiacum (FDR-Mha) all showed activity for FOP. Although the activity for FOP was lower than that for F-420, with slightly lower k(cat) and higher K-m values, the catalytic efficiencies were only 2.0, 12.6, and 22.4 times lower for TfuFNO, FSD-Cryar, and FDR-Mha, respectively. Thus, FOP could be a serious alternative for replacing F-420 and might boost the application of F-420-dependent enzymes in biocatalysis.
Original language | English |
---|---|
Pages (from-to) | 6435-6443 |
Number of pages | 17 |
Journal | ACS Catalysis |
Volume | 9 |
Issue number | 7 |
DOIs | |
Publication status | Published - 5-Jul-2019 |
Keywords
- deazaflavin
- riboflavin kinase
- F-420
- biocatalysis
- reductase
- SECONDARY ALCOHOL-DEHYDROGENASE
- F-420 PROTECTS MYCOBACTERIA
- NADP REDUCTASE
- COENZYME F-420
- DRUG CANDIDATE
- GLUCOSE-6-PHOSPHATE-DEHYDROGENASE
- PURIFICATION
- OXIDOREDUCTASE
- TUBERCULOSIS
- CATALYZE