Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F-420-Dependent Enzymes

Jeroen Drenth, Milos Trajkovic, Marco W. Fraaije*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)
240 Downloads (Pure)

Abstract

F-420-dependent enzymes are found in many microorganisms and can catalyze a wide range of redox reactions, including those with some substrates that are otherwise recalcitrant to enzyme-mediated reductions. Unfortunately, the scarceness of the cofactor prevents application of these enzymes in biocatalysis. The best F-420-producing organism, Mycobacterium smegmatis, only produces 1.4 mu mol per liter of culture. Therefore, we synthesized the unnatural cofactor FO-5'-phosphate, coined FOP. The FO core-structure was chemically synthesized, and an engineered riboflavin kinase from Corynebacterium ammoniagenes (CaRFK) was then used to phosphorylate the 5'-hydroxyl group. The triple F21H/F85H/A66I CaRFK mutant reached 80% of FO conversion in 12 h. The same enzyme could produce 1 mg (2.5 mu mol) of FOP in 50 mL of reaction volume, which translates to a production of 50 mu mol/L. The activity toward FOP was tested for an enzyme of each of the three main structural classes of F-420-dependent oxidoreductases. The sugar-6-phosphate dehydrogenase from Cryptosporangium arvum (FSD-Cryar), the F-420:NADPH oxidoreductase from Thermobifida fusca (TfuFNO), and the F-420-dependent reductases from Mycobacterium hassiacum (FDR-Mha) all showed activity for FOP. Although the activity for FOP was lower than that for F-420, with slightly lower k(cat) and higher K-m values, the catalytic efficiencies were only 2.0, 12.6, and 22.4 times lower for TfuFNO, FSD-Cryar, and FDR-Mha, respectively. Thus, FOP could be a serious alternative for replacing F-420 and might boost the application of F-420-dependent enzymes in biocatalysis.

Original languageEnglish
Pages (from-to)6435-6443
Number of pages17
JournalACS Catalysis
Volume9
Issue number7
DOIs
Publication statusPublished - 5-Jul-2019

Keywords

  • deazaflavin
  • riboflavin kinase
  • F-420
  • biocatalysis
  • reductase
  • SECONDARY ALCOHOL-DEHYDROGENASE
  • F-420 PROTECTS MYCOBACTERIA
  • NADP REDUCTASE
  • COENZYME F-420
  • DRUG CANDIDATE
  • GLUCOSE-6-PHOSPHATE-DEHYDROGENASE
  • PURIFICATION
  • OXIDOREDUCTASE
  • TUBERCULOSIS
  • CATALYZE

Fingerprint

Dive into the research topics of 'Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F-420-Dependent Enzymes'. Together they form a unique fingerprint.

Cite this