Abstract
Measurements of p variables for n samples are collected into a n×p matrix X, where the samples belong to one of k groups. The group means are separated by Mahalanobis distances. CVA optimally represents the group means of X in an r-dimensional space. This can be done by maximizing a ratio criterion (basically one- dimensional) or, more flexibly, by minimizing a rank-constrained least-squares fitting criterion (which is not confined to being one-dimensional but depends on defining an appropriate Mahalanobis metric). In modern n < p problems, where W is not of full rank, the ratio criterion is shown not to be coherent but the fit criterion, with an attention to associated metrics, readily generalizes. In this context we give a unified generalization of CVA, introducing two metrics, one in the range space of W and the other in the null space of W, that have links with Mahalanobis distance. This generalization is computationally efficient, since it requires only the spectral decomposition of a n×n matrix.
Original language | English |
---|---|
Pages (from-to) | 2-27 |
Number of pages | 26 |
Journal | Journal of Classification |
Volume | 31 |
Issue number | 1 |
DOIs | |
Publication status | Published - Apr-2014 |