Abstract
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease. Alison Hardcastle et al. report a genome-wide meta-analysis of keratoconus, a condition affecting the cornea that causes blurred vision and often leads to blindness. They identify 36 genomic regions associated with keratoconus, 31 of which are novel, and show that the genes in these regions implicate genetic pathways involved in collagen matrix integrity and cell differentiation.
Original language | English |
---|---|
Article number | 266 |
Number of pages | 13 |
Journal | Communications biology |
Volume | 4 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1-Mar-2021 |