Organisation profile

Organisation profile

How, when, and why did distinct populations or species split? What are the evolutionary footprints left in their genomes? What is the role of natural selection in shaping the diversity of natural populations and species? When sexual species hybridize and share genetic material, why don't they eventually collapse into a single species? What are the consequences of the exchanges of genetic material between species, and how often is this process beneficial? These are some of the questions we work on.

We study how natural populations evolve and adapt at the genomic level, with particular interest in the process of adaptation and speciation, through which clusters of individual genotypes become distinct and persist over time. This is the fundamental process that underlies the evolution and diversification of life.

Our research aims to better understand the processes of adaptation and speciation by using both computational approaches based on population genetic theory, and genomic data to test hypotheses on how natural populations evolve.

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. Our work contributes towards the following SDG(s):

  • SDG 2 - Zero Hunger
  • SDG 3 - Good Health and Well-being
  • SDG 13 - Climate Action
  • SDG 14 - Life Below Water
  • SDG 15 - Life on Land
  • SDG 17 - Partnerships for the Goals

Fingerprint

Dive into the research topics where Fontaine lab - Ecological and Evolutionary Genomics is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or